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ABSTRACT fé l" (Oq g

Possible experiments on the scattering of energetic
particles by laboratory plasmas are discussed. Expressions for
scattering coefficients in terms of the electric field auto-
correlation function are derived. Sample situations are considered.
Whereas incoherent scattering of electromagnetic waves is

governed by the charge density auto-correlation function, energetic

particle scattering is governed by the electric field auto-

correlation function.




I. INTRODUCTION

Plasma kinetic theories have developed rapidly within the
last few years, but have sometimes lacked the focus that would
have been provided by a close parallel devclopment of experimental
tests. Therefore it is of interest to identify in detail classes
of experiments which can provide direct tests of various aspects
of the theory. The purpose of this note is to point out one such
possible measurement for a quantity which is of some current
theoretical interest: the spectral density of microscopic electric
field fluctuations.(l‘7)

Energetic particle beams, which can be sharply defined in
both velocity and configuration space, provide a probe for the
structure of the microscopic fluctuating electric field in a
plasma. For example, the angular spread of a scattered beam pro-
vides a direct measure of the integrated spectrum of the electric
field auto-correlation function.

The subject under discussion is different from what are now
usually called "beam-plasma interactions."” The incident beam is
assumed to be so tenuous that it is energetically impossible for

it to disturb the plasma to any significant extent. Any growth

rates for streaming instabilities (which will go to zero as the beam




density goes to zero) are assumed to be much less than all other
frequency scales of interest for the problem. We have essentially
a "test-particle" problem. The ideal experiment--not in fact
unreasonable with existing electron guns and detectors--would involve
scattering one particle at a time.

General expressions for the scattering coefficients are

derived in Part II, and various limiting cases are considered in

Part IIT.




II. CALCULATION OF THE SCATTERING COEFFICIENTS

We idealize the plasma as an infinite, spatially-uniform
slab, confined between the planes x = 0 and x = L. A monoenergetic
beam of charged particles with velocities ?; = VO gx strikes the
slab at the origin, passes through it, and is detected somewhere
in the region x > L (see Fig. 1).

The scattered particles have charge-to-mass ratio q/m, and
we either assume VO >> all thermal velocities of the plasma particles
of the same species, or else that there are no plasma particles of
that species. (This is in order to be sure that the detected
particles are the original ones shot in.)

If the number of plasmé particles per Debye sphere is high,
the occasional large-angle scattering events (i.e., two-~body
scattering with impact parameters < qe/KT) can be consistently
neglected. The scattering will be largely due to the collective
fluctuations in the microscopic electric field and it will be
slight. To zeroth order, the incident particles will not be scattered

at all; we may calculate the trajectories of the scattered particles

as small corrections to the free-flight orbits.




We first compute formally the scattering of a single
incident particle in terms of the exact electric field in the
plasma, then introduce statistical averages to bring in the auto-
correlation functions. If the electric field in the ﬁlasma is

E (x,t), the equation of a particle's motion is

LI 3§ (7(s),1) (1)

(we ignore magnetic forces).

The electric field is most conveniently given as a Fourier

integral:

—_, -

B(E,w) e (K-xtwt) (2)

E(X,t) = [ dk dw

The initial conditions of the orbit may be taken to be

7(0) = 0, dr(0)/dt = Vg, and the zeroth approximation to the orbit

The first approximation is the solution of

a7t (t)
—_

e = = E(T(t),t) (3)

which is
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Correct to lowest order, the value of t for which the

particle first emerges from the right face of the slab is L/VO = to,

say. Thus the scattering in velocity and position will be

drl(to)
av at o
1(w+k-Vo)t

E(E:w) [e ©

1(w+k'Vo)

9 | & dau -1]

(6)




Ar = rl(t ) - ot
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m . e . T
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(7)

Formulas (6) and (7) for the displacement fn position and
velocity of the scattered particle contain much more detail than
we can use, because of course E(E,w), the exact electric field, is
unknown. However, the experiments will be done on many electrons,

so we shall take ensemble averages, and consider expectation values

of AV and Ar. We indicate ensemble averages by brackets (< )).
Since for spatially-uniform plasmas, <ﬁ(§,w)> = 0, the mean
values <A§'> and <AG'> vanish. However, the r.m.s. values
<l(d;f3)l/2 and ((A%)?)l/e are non-zero. More general quantities
which we can derive from A; and A;, and from which we can derive

the mean square deflections, are the tensors |




AT AT ) =
2 T —'. t
. gz.-/ﬂ dkﬁdf ./h die' dw (Ex,0) EE',0"))
w+ Vo W'k o
i(w+k-V )t
X [e - = -l] - tO
i(wt -VO)
i(w'+k'.V )t
X [e -l] - t
i(w'+k 'V ) °
. . i(w+k -V )t 2 .
R TR S M S
(w+k-Vo)2 i(w+k VO) kuw
(8)
and
(5% &7) =

ﬂif -'d; f e '~ (B(E,0) B(E",01)
wtk w'+k -

) 1(w+kV )t } {1(w'+k AR )t

1 (k- V )t

= ,9; fcﬂédm < = B, - @
| Ko

w+1—('- v
o)




10

In Equations (8) and (9), the tensor quantity <§>4 is
kw

the Fourier transform of the autocorrelation tensor (ﬁ(;,t) ﬁ(g',t')) s

which obeys the well-known relation
(E(K,0) E(K',0'))
= (8). o(wh') s(kK+k")
kw

= (BE,0) FEw)) o(ww') 6EE"). (10)

The trace of 8n <§>ﬂ , minus the Fourier-transformed self-
kw
energy of the plasma particles, has the physical interpretation of

being the spectral density of the energy in the fluctuating electric

field.
Powerful methods have been developed, largely along lines

), - It is not the
w
intention here to add to the theory of these quantities, but

set down by Rostoker, for calculating <§>
k

rather to relate them to concrete observables in the scattering

problem.
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III. SCATTERING OVER SEVERAL DEBYE LENGTHS

The extent to which one can go further with expressions (8)

and (9) is largely determined by the characteristics of the

For situations not greatly different from thermal equilibrium,

we expect the contributions to integrals over <§)ﬂ to come
ko
primarily from the regions

—

Ikl Vin (rt LD)-l < a few units,

€
A

where Vth
LD = kil = the Debye length. If, in addition, the plasma is many
Debye lengths thick, and Q-VO to >> 1 for most of the values of E,

the maximum thermal velocity in the plasma, and L

we can approximate (8) and (9) by their asymptotic forms for large

to. It is simple algebra to show that for large to’

AV A = 0 dk (S - (11)
(87 27) S <>E,-E’-V ,
and s o
t q o
ozt (s @ 0
X,-k-V

? o)
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The quantity of perhaps most interest is the angular spread produced

in the beam. To the order we are going, this is

. ((avy-av)))
/7 = vV =
o]

where A;L is the component of AV perpendicular to Vo' In the

present geometry, the full expression is
2 bt La
(oP) = ok Pz [ & (§), (13)
o}

where

G gq = O g T Gy
Since to = L/Vo’ the mean angle of scattering is proportional to
the square root of the target thickness, a familiar result from
conventional multiple-scattering theory.(g)
A computation of the differential scattering cross section
does not appear to be feasible in the present framework. The

calculation seems to amount to determining arbitrarily many moments

of the probability of scattering into an element of angle df,
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and so far we have only the second moment. The expression for the
nth moment involves, :or example, the 4n-dimensional Fourier

transform of such ensemble averages as

(E(x,t) E(x',t') E(x",t") ... n factors) ,

which rapidly become cumbersome.
A simple application of (13) is recovery of the Spitzer

ninety-degree deflection time for a suprathermal particle. For

an electron-proton plasma, the theory(l) gives:
2 — -
N 2n e 3 ZJ. F.(-w/k)
G = —— 5 Hi— (14)
kw ‘D (k,lm)l
where
n, = number density of electrons and protons
Fj(u) = fj(V) §(u-K-v/k) dav
£.(Vv) = distribution function of jth species (electron or
J proton)
- b n &° F.'(u) du
D (X,iw) = 1 - lim Z o i_7
e—0 J mjk u)+ku-1€
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We may estimate the integral in (13), for the case of
equilibrium £, (¥) and V_ >> all thermal velocities, as follows.
Most of the contribution will come from the range kD < li€| < ko,
where k= KT/e?. For |k much less than k., the (D' gets very
large and makes the integrand negligible. Roughly, this part of
E-space corresponds to distances greater than a Debye length,
which makes a natural limitation on the distance over which the
low-frequency part of the electric field can remain correlated.
The neglect of the part of E-space withl k1> ko corresponds,
as usual. to the neglect of verv close encounters. Over nearly

all of this range of E, and for Vo large, we have D' as ~ 1.

This gives

f * {@%‘,-z-v}

0
k
2 noe2 o 1 sin® 6
~ - (2m) K® dk d (cos 8) = Zj FJ.(-Vo cos 6)
D -1
A
)-I-n ea k o 2
= — i =2 dE (1 - %—2) £y Fy (<€)
o k5 v o J
Yo
8n e k
Vo 4n k_o s
o} D
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so that
2 % (ko)
=
((AG) ) 16m T n,4n k, (15)
. T 2\ /. faND v Tt O .
Setting {(AG) ) = (1/2)7, and solving for to gives
o m® Vba
t] = == . (16)
- Yg0°-scattering 6k f,¢ 4 £n (kO/kD)

This agrees, up to a numerical factor of order unity, with the
Spitzer ninety-degree deflection time for the same situation.(6)
From (15), we may also inquire into the thickness of a

plasma necessary to scatter a beam through an angle ¢, say:

L - 1 T cP2
T Im noqze:zzn Zk07kD5 ’ (17)

where T = mV02 /2 is the particle kinetic energy.

Formula (17) illustrates what may prove to be one of the
more annoying difficulties in the experiment: when T is large
enough for the scattered particles to be easily countable, and
¢ is measurably large, (17) only leads to reasonable lengths when

n, is very large.
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For example, if we estimate 4n (ko/kD) at about 10, require
¢ to be 2 degrees, and let n_ ~ 10%, then L ~ 5 x 10* cm for
scattering a kilovolt electron--a prohibitively large plasma.
Bringing the energy down to 50 eV gives L < 1o cm, vut 50 eV is
getting close enough to the thermal energy of most realizable plasmas
that problems might well arise in distinguishing the scattered
particles from the plasma particles.

Perhaps the best solution to the dilemma is to scatter only
positive ions of species which are not present in the plasma. The
energies of these could be made low enough to reduce L to reasonable
values without risk of confusion with the plasma particles. If the
ions were multiply charged, L would of course be further decreased,
due to the q© in the denominator of (17).

Some circumstances can act to greatly enhance plasma
fluctuations and thus greatly increase ((A6Y3> . Most notably,
as an unstable situation is approached, |D+|,'2 develops a rescnance

which dominates the integrals over <§L ., _» eventually diverging
k,-k-V
o

as the stability boundary is reached. (A plasma carrying a current
slightly less than that required for the onset of instability is
the most obvious example.) The greatly enhanced scattering of
the test beam can act as a plasma probe to signal the approach of
an instability, and may prove to be the most important application

of the energetic particle-scattering technique.
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FIGURE CAPTION

Geometry of the scattering. The incident beam

strikes the plasma from the left at the origin.
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